If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-342x-72=0
a = 2; b = -342; c = -72;
Δ = b2-4ac
Δ = -3422-4·2·(-72)
Δ = 117540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{117540}=\sqrt{36*3265}=\sqrt{36}*\sqrt{3265}=6\sqrt{3265}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-342)-6\sqrt{3265}}{2*2}=\frac{342-6\sqrt{3265}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-342)+6\sqrt{3265}}{2*2}=\frac{342+6\sqrt{3265}}{4} $
| 4t-7t=t+5 | | 3x+14=2x+25 | | 4^x=130000000000 | | 2^x=130000000000 | | -3(2x+12)-(-1+x)=35 | | x=34=3x | | 2x+4=-8x+16+2x | | 5x-8=120 | | 2h-{6h-5}=-1 | | 3(1=d) | | 16-3q=-8 | | 10=-2(x+2)+3(x–10) | | 4(8a+6)=-27 | | 9x-8+2x-1=180 | | 13-3n=-7(-1-n)-7n | | 4(x-10)=-6(2-x)=x+6 | | 3t/2=7/8 | | 3n^2+6n=1005 | | 25-5(6v-1)=-60 | | 2(x-5)+15=3(x-4)+10 | | 2(x–1)–3(2x+2)=8. | | 9g-14=7g | | -10h+10=-35 | | (x+3)^4+(x+2)^4+(x+1)^4=98 | | 2x-(13-x)=2 | | 7x(x-7)=0 | | y=3448.3(2023)-7E+06 | | 3n^2+5n=1005 | | 2x-(x+5)=5-x | | 27=3c-3(6-2+) | | x2=81/16 | | 3(x+2)=10x-5 |